
MOST EXPENSIVE ORDER

SQL CODE
WRITE-UP

NOV 2023

A database with many tables has foreign keys that are

designed to join the tables during SQL queries.

Find the most expensive order by joining the following

tables:

Orders.OrderID ⟶ OrdersDishes.OrderID

OrdersDishes.DishID ⟶ Dishes.DishID

Orders.CustomerID ⟶ Customers.CustomerID

Joins, Group By & Order By

LinkedIn Coding Challenge

Intermediate

INPUT FORMAT

The source tables are ORDERS, ORDERSDISHES, DISHES and CUSTOMERS. The tables are
connected as follows:

CONSTRAINTS

The DISHES table doesn’t have a quantity column so each dish in an order has a quantity of one

CODE SOLUTION

SELECT Orders.ORDERID, Customers.FIRSTNAME, Customers.LASTNAME,
SUM(Dishes.PRICE) AS ORDERTOTAL

FROM Orders

JOIN OrdersDishes

ON Orders.ORDERID = OrdersDishes.ORDERID

JOIN Dishes

ON OrdersDishes.DISHID = Dishes.DISHID

JOIN Customers

ON Orders.CUSTOMERID = Customers.CUSTOMERID

GROUP BY Orders.ORDERID

ORDER BY ORDERTOTAL DESC

LIMIT 1

SOLUTION PROCESS

Select function: ORDERS is the primary table choice because it has the greatest many-to-one
relationships connected to it. Join functions allow extraction of customer names and summed
dish price data renamed as ORDERTOTAL.
Group By: Results are grouped by first column in Select function to ensure that ORDERTOTAL is
summed per each individual order
Limit function: Only top result is requested. Couple with Order by function in descending order,
the code produces such a result. Alternative, the same output is derived from using a SELECT
TOP [#] function.

OUTPUT

--

| ORDERID | FIRSTNAME | LASTNAME | ORDERTOTAL |

--

| 787 | Yves | Dell'Abbate | 58.95 |

--

